Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Naya Fernando, Pernas-Sánchez Jesus, Fernández Carlos, Zumel Pablo, Droździel-Jurkiewicz Magda, Bieniaś Jarosław
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 342
Numer artykułu: 118238
Strony: 1 - 11
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This work was conducted under financial support of Comunidad de Madrid, Spain through the project UNION. Additionally, F. Naya acknowledges the UC3M the funding received through the 30 Estancias posdoctorales grant and also the projects of the Vicerrectorado de Política Científica from University Carlos III de Madrid, Spain 2023/00409/001 and 2023/00264/001. CT analysis was performed at the Research Center for Pro-environmental and Energy-saving Materials and Technologies (CeBMaT) (Minister of Science and Education of the Republic of Poland) at Lublin University of Technology (project no. POIR.04.02.00-00-D009/20). C. Fernandez and P. Zumel acknowledge the funding received through the grant TED2021-129240B-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, to continue the research with the power electronic converter. Funding for APC: Universidad Carlos III de Madrid (Agreement CRUE-Madroño 2024).
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 12 czerwca 2024
Abstrakty: angielski
Post-impact strength and damage tolerance of composite structures stands as a paramount design consideration in the aeronautical industry. In the event of a low velocity impact, a set of damage manifestations within laminated structures are induced, including matrix cracking, delamination and fiber breakage. Despite the critical importance of discerning the influence of each damage type on post-impact compression strength, only a limited number of studies have endeavored to quantify these effects comprehensively. In response to this research gap, we have developed a novel methodology capable of mimicking damage extension and shape caused by a low-velocity impact, while preserving fiber integrity. This innovation is achieved through the application of induced electrical currents, thereby facilitating controlled damage simulation without compromising fiber structural integrity. Our investigation compares the residual stiffness and strength of AS4/PEEK laminates subjected to low velocity impacts and induction currents, under conditions of equivalent damage. Our findings reveal that fiber breakage significantly influences the loss of stiffness in the laminate, but not its strength. Moreover, our results confirm the role of delamination as the primary determinant of strength degradation in the damaged material.