Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
0
brak dyscyplin
Status:
Autorzy: Karpiński Robert, Machrowska Anna, Maciejewski Marcin, Jonak Józef, Krakowski Przemysław, Syta Arkadiusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 18
Strony: 19 - 31
Impact Factor: 1,0
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 sierpnia 2024
Abstrakty: angielski
Nowadays, the world is struggling with the problems of an aging society. With the increasing share of older people in the population, degenerative joint diseases are a growing problem. The result of progressive degenerative changes in joints is primarily the deterioration of the patients' quality of life and their gradual exclusion from activity and social life. The ability to effectively, non-invasively and quickly detect cases of chondromalacia of the knee joints is a challenge for modern medicine. The possibility of early detection of progressive degenerative changes allows for the appropriate selection of treatment protocols and significantly increases the chances of inhibiting the development of degenerative diseases of the musculoskeletal system. The article presents a non-invasive method for detecting degenerative changes in the knee joints based on recurrence analysis and classification using neural networks. The result of the analyzes was a classification accuracy of 91.07% in the case of MLP neural networks and 80.36% for RBF networks.