Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza wykazu
Status:
Autorzy: Jaén Elmer, Omiotek Zbigniew, Pinzón Cristian
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Elektroniczna
Język: angielski
Strony: 1 - 7
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: 22nd International Multi-Conference for Engineering, Education and Technology
Skrócona nazwa konferencji: 22nd LACCEI 2024
URL serii konferencji: LINK
Termin konferencji: 17 lipca 2024 do 19 lipca 2024
Miasto konferencji: San Jose
Państwo konferencji: KOSTARYKA
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 15 sierpnia 2024
Abstrakty: angielski
The diagnosis of skin lesions plays a crucial role in the early detection and treatment of various dermatological conditions. In this study, we present a web-based system for skin lesions diagnosis that utilizes deep learning models to support the identification of six different types of skin lesions (nevus, pigmented benign keratosis, seborrheic keratosis, melanoma, basal cell carcinoma and squamous cell carcinoma). The web application allows users to upload images, which are then processed by the classifier to determine the most likely skin lesion present. Six pre-trained DCNN architectures (VGG16, VGG19, DenseNet201, InceptionV3, MobileNetV2, and Xception) were used in this research. A dataset containing 2400 images was used to train the models. Data augmentation techniques were employed to increase the number of training samples. After conducting experimentation and a comprehensive evaluation, we concluded that the deep learning models provided satisfactory results in detecting the different skin lesions. Notably, the VGG16 model exhibited superior classification accuracy (86%) and fast response times, making it the most effective model among the six. The web-based system, designed with a user-friendly and easy-to-use interface serves two purposes: empowering patients to perform self-diagnosis and providing dermatologists with support for more accurate diagnoses. Our findings highlight the potential of deep learning models, particularly the VGG16 architecture, in assisting with the diagnosis of skin lesions. Our work proved that it is possible to build an efficient skin lesions diagnosis tool based on existing web technologies and machine learning methods.