Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
Management decisions about store atmosphere, such as temperature, or light intensity in retail establishments can be made based on solutions from machine learning methods. These conditions determine whether the customer will stay in the store longer and whether his shopping cart will reach the desired high value. Previous literature research associates certain atmospheric factors with customers' propensity to make purchasing decisions and allows us to identify what influences the customer during shopping and to what extent. The article aims to reveal the feasibility of using machine learning methods to make management decisions based on store atmosphere parameters. When deciding on the conditions in a retail establishment, applicable health and safety regulations should also be considered. This was used to set limits on the input parameters for the model. The authors identified 3 atmospheric factors and, based on them, proposed two types of models: regression and classification models, predicting how long customers stay in an establishment and can classify it into categories: short, medium and long. These models can then be used to create a model that optimizes the parameters in the facility to achieve a minimum given time a customer stays in the facility.