Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Bojanowska Agnieszka, Kulisz Monika, Infante-Moro Alfonso
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 7
Wolumen/Tom: 18
Strony: 460 - 474
Impact Factor: 1,0
Scopus® Cytowania: 0
Bazy: Scopus | BazTech | Google Scholar
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 11 września 2024
Abstrakty: angielski
Management decisions about store atmosphere, such as temperature, or light intensity in retail establishments can be made based on solutions from machine learning methods. These conditions determine whether the customer will stay in the store longer and whether his shopping cart will reach the desired high value. Previous literature research associates certain atmospheric factors with customers' propensity to make purchasing decisions and allows us to identify what influences the customer during shopping and to what extent. The article aims to reveal the feasibility of using machine learning methods to make management decisions based on store atmosphere parameters. When deciding on the conditions in a retail establishment, applicable health and safety regulations should also be considered. This was used to set limits on the input parameters for the model. The authors identified 3 atmospheric factors and, based on them, proposed two types of models: regression and classification models, predicting how long customers stay in an establishment and can classify it into categories: short, medium and long. These models can then be used to create a model that optimizes the parameters in the facility to achieve a minimum given time a customer stays in the facility.