Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Cioch Michał, Kulisz Monika, Kański Łukasz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 7
Wolumen/Tom: 18
Strony: 229 - 238
Impact Factor: 1,0
Scopus® Cytowania: 0
Bazy: Scopus | BazTech
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Otwarte czasopismo
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 sierpnia 2024
Abstrakty: angielski
The purpose of this article is to propose a fuzzy logic system as a tool for automated risk identification of potential technical challenges and social barriers during the implementation of artificial intelligence-based co-bots on work- stations in manufacturing enterprises. On the basis of an extensive literature review, as well as industry reports and expert consultations, the basic challenges and enterprise barriers occurring during the implementation of changes in enterprises, especially during the implementation of the latest technologies, were selected. A fuzzy logic model was then developed that, based on the values of the input factors, generates an answer as to whether there is a risk of technical or social challenges in an enterprise when implementing the latest technologies. The results generated by the developed model, when confronted with expert knowledge, experience and subjective assessments, showed that the model works as expected. The results of the study suggest that the use of fuzzy logic can effectively sup- port companies in detecting challenges and obstacles, thereby facilitating decision-making in reducing the risk of their occurrence. Adaptation to the conditions currently prevailing in the company allows for dynamic adjustment of co-bot deployment strategies, which in turn can lead to more effective management of technological changes and minimization of potential operational disruptions.