Automatic Method of Macular Diseases Detection using Deep CNN-GRU Network in OCT Images
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
Status: | |
Autorzy: | Powroźnik Paweł, Skublewska-Paszkowska Maria, Rejdak Robert, Nowomiejska Katarzyna |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2024 |
Wersja dokumentu: | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 4 |
Wolumen/Tom: | 18 |
Strony: | 197 - 206 |
Impact Factor: | 1,0 |
Web of Science® Times Cited: | 0 |
Bazy: | Web of Science |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 7 kwietnia 2024 |
Abstrakty: | angielski |
The increasing development of Deep Learning mechanism allowed ones to create semi-fully or fully automated diagnosis software solutions for medical imaging diagnosis. The convolutional neural networks are widely applied for central retinal diseases classifi- cation based on OCT images. The main aim of this study is to propose a new network, Deep CNN-GRU for classification of early-stage and end-stages macular diseases as age-related macular degeneration and diabetic macular edema (DME). Three types of disorders have been taken into consideration: drusen, choroidal neovascularization (CNV), DME, alongside with normal cases. The created automatic tool was verified on the well-known Labelled Optical Coherence Tomography (OCT) dataset. For the classifier evaluation the following measures were calculated: accuracy, precision, recall, and F1 score. Based on these values, it can be stated that the use of a GRU layer directly connected to a convolutional network plays a pivotal role in improving previously achieved results. Additionally, the proposed tool was compared with the state-of-the-art of deep learning studies performed on the Labelled OCT dataset. The Deep CNN-GRU network achieved high performance, reaching up to 98.90% accuracy. The obtained results of classification performance place the tool as one of the top solutions for diagnosing retinal diseases, both early and late stage. |