Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Xi Xinyue, Zheng Yuanxun, Zhuo Jingbo, Zhang Peng, Golewski Grzegorz Ludwik, Du Chaowei
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 452
Numer artykułu: 138867
Strony: 1 - 20
Impact Factor: 7,4
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: Natural Science Foundation of Henan (Grant No.232300421014), Key scientific research projects of colleges and universities in Henan Province (Grant No. 23ZX014), and National Natural Science Foundation of China (Grant No. 52279144/52379137/ U2040224).
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
This study utilizes the synergistic effects of mechanical activation, thermal activation, and chemical activation to prepare recycled cement (RC) and reveals the mechanism by which water glass modulus and alkali content affect the mechanical properties, hydration characteristics, and microstructure of RC, aiming to address the performance deficiencies caused by its low reactivity. Based on preliminary experimental results, this study focuses on cement mortars with a thermal activation temperature of 750°C and an RC replacement rate of 30 %. Through mechanical tests, X-ray diffraction (XRD), mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM), we conducted a series of investigations into the influence of alkali activator content on the mechanical properties, hydration characteristics, and microstructure of RC mortars. The test results show that adding an alkali activator does not alter the types of hydration products in RC; it can change the hydration reaction rate and the quantity of final hydration products. As the water glass modulus and alkali content increase, the quartz and gypsum content in the thermally activated RC decrease, the pore structure reduces, the volume of harmless pores increases, and more C-(N)-A-S-H gel is produced. However, when alkali content further increases, the aluminosilicate oligomers in the thermally activated RC dissolve into aluminum and silicate molecules, reducing the oligomer content in the mortar and hindering the polymerization process. The mechanical properties of the alkali-activated thermally activated RC first increase and then decrease with the rise in water glass modulus and alkali content. The optimal mechanical performance of RC is achieved when the water glass modulus is 1.5 and alkali content is 6 %, with a 28-day compressive strength reaching 33.97 MPa, an improvement of 23.04 % compared to RC without alkali activation. At this point, CH and calcite participate in the high-alkali content system reaction, forming C-A-S-H and N-A-S-H gels, leading to a near-complete consumption of CH and the formation of a denser microstructure at early stages. Our study reveals the hydration reaction mechanism and microstructural evolution of alkali-activated RC, optimizing the parameters of water glass modulus and alkali content and providing a theoretical basis for improving the mechanical properties of RC.