Effects of different gas energy shares on combustion and emission characteristics of compression ignition engine fueled with dual-fossil fuel and dual-biofuel
Artykuł w czasopiśmie
MNiSW
200
Lista 2024
Status: | |
Autorzy: | Rimkus Alfredas, Stravinskas Saulius, Matijošius Jonas, Hunicz Jacek |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2024 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Wolumen/Tom: | 312 |
Numer artykułu: | 133443 |
Strony: | 1 - 23 |
Impact Factor: | 9,0 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 0 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | Jecek Hunicz acknowledges support from the project “VIA CARPA TIA Universities of Technology Network named after the President of the Republic of Poland Lech Kaczynski”, contract No. MEiN/2022/DPI/ 2575. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 22 października 2024 |
Abstrakty: | angielski |
This study systematically investigates the energetic and environmental performance of a four-cylinder compression ignition (CI) engine fueled by gaseous and liquid dual-fuel (D-F), utilising various combinations of fossil fuels and biofuels. Fossil diesel or pure hydrotreated vegetable oil (HVO) – new generation biodiesel was used as the pilot fuel to initiate ignition of the gaseous fuel. The gaseous fuels used were natural gas (NG) and simulated biogas (BG) composed of 60 % NG and 40 % CO2 by volume, injected into the intake manifold at varying gas energy shares (GES) of 40 %, 60 %, and 80 %. Reference values were provided from conventional combustion of diesel fuel and HVO. This study used numerical simulations to examine indicators of combustion, such as ignition delay, premixed combustion phase, diffusion combustion phase, and subsequent combustion phases, across diverse fuel combinations. Within lean dual-fuel mixtures, when the gaseous fuel remained below the flammability threshold, the peak pressure was diminished, the rate of pressure rise was lowered, and the combustion process decelerated, facilitating a faster transition to the diffusion phase. As the engine load and GES increased, the excess air ratio decreased, bringing the air-fuel mixture closer to the flammability limit, which in turn altered the combustion characteristics and engine performance trends. Combustion with increasing BG content showed partial similarities to that of NG, though the high CO2 content in biogas was found to suppress combustion, functioning similarly to an exhaust gas recirculation. The study also compared brake thermal efficiency (BTE), as well as specific emissions of CO, HC, NOX, CO2, and smoke for the D-F engine operation against pure diesel and HVO at different loads and GES levels. Additionally, an overlimit function was used to assess the emission levels of D-F engines with reference to emission limits. |