Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Nowak Radosław, Rodak Dominik, Pytel Stefan, Rumianek Przemysław, Wawrzyniak Paweł, Dębski Daniel Krzysztof, Dudziak Agnieszka, Caban Jacek
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 21
Wolumen/Tom: 17
Numer artykułu: 5341
Strony: 1 - 24
Impact Factor: 3,1
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Finansowanie: This research was funded by IDUB-IMech Warsaw University of Technology, entitled “Badania hybrydowych elementów nadwozi pojazdów kołowych w zakresie pozyskiwania energii i monitoringu konstrukcji”.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 31 października 2024
Abstrakty: angielski
This article presents the concept, research, and modeling of a sandwich composite made from ULTEM 9085 and polycarbonate (PC). ULTEM 9085 is relatively expensive compared to polycar- bonate, and the composite structure made of these two materials allows for maintaining the physical properties of ULTEM while reducing the overall costs. The composite consisted of outer layers made of ULTEM 9085 and a core made of polycarbonate. Each layer was 3D-printed using the fused filament fabrication (FFF) technology, which enables nearly unlimited design flexibility. The geometry of the test specimens corresponds to the ISO 527-4 standard. Tensile and three-point bending tests were conducted. The structure was modeled in a simplified manner using averaged stiffness values, and with the classical laminate theory (CLT). The models were calibrated through tensile and bending tests on ULTEM and polycarbonate prints. The simulation results were compared with experimental data, demonstrating good accuracy. The 3D-printed ULTEM-PC-ULTEM composite exhibits favorable mechanical properties, making it a promising material for cost-effective engineering applications.