Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Lista 2024
Status:
Autorzy: Hu Zhengbing, Shkurat Oksana , Przystupa Krzysztof, Kochan Orest, Ivakhnenko Marharyta
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2024
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 5
Wolumen/Tom: 16
Strony: 1 - 13
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 8 października 2024
Abstrakty: angielski
Low-light scenes are characterized by the loss of illumination, the noise, the color distortion and serious information degradation. The low-light image enhancement is a significant part of computer vision technology. The low-light image enhancement methods aim to an image recover to a normal-light image from dark one, a noise-free image from a noisy one, a clear image from distorting one. In this paper, the low-light image enhancement technology based on Retinex-based deep network combined with the image processing-based module is proposed. The proposed technology combines the use of traditional and deep learning methodologies, designed within a simple yet efficient architectural framework that focuses on essential feature extraction. The proposed preprocessing module of low-light image enhancement is centered on the unique knowledge and features of an image. The choice of a color model and a technique of an image transformation depends on an image dynamic range to ensure high results in terms of transfer a color, detail integrity and overall visual quality. The proposed Retinex-based deep network has been trained and tested on transformed images by means of preprocessing module that leads to an effective supervised approach to low-light image enhancement and provide superior performance. The proposed preprocessing module is implemented as an independent image enhancement module in a computer system of an image analysis and as the component module in a neural network system of an image analysis. Experimental results on the low light paired dataset show that the proposed method can reduce noise and artifacts in low-light images, and can improve contrast and brightness, demonstrating its advantages. The proposed approach injects new ideas into low light image enhancement, providing practical applications in challenging low-light scenarios.