Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Chabanyuk Yaroslav, Cieślak Waldemar, Mozgawa Witold, Naiman Aharon
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 35
Numer artykułu: 35
Strony: 1 - 19
Web of Science® Times Cited: 0
Bazy: Web of Science
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
In the present paper, we introduce two important modifications to the recurrence relation for the Fuss relations derived in Cieślak (Comput Aided Geom Des 66:19–30, 2018). These modifications allow for a simpler and unified method for determining the relations, and additionally explain why their derivation is extremely difficult. We introduce two convenient notions of unified and reduced Fuss relations (u.F.r. and r.F.r.) and, using the resulting theory, derive such relations for the cases of n=3,...,10. The introduced modifications of the recursion allow us to formulate two theorems about the nature of polynomials, by means of which Fuss relations are determined. We show that for n even we get one formula u.F.r., while for n odd we get two r.F.r., corresponding to odd and even indices of rotation of the closed Poncelet transversals. The introduced method of notation allows a significant reduction in the number of terms in the Fuss relations, which we have shown in the considered examples and which can be easily verified on all Fuss relations known so far.