Modeling Material Machining Conditions with Gear-Shaper Cutters with TiN0.85-Ti in Adhesive Wear Dominance Using Machine Learning Methods
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
Status: | |
Autorzy: | Kupczyk Maciej Jan, Leleń Michał, Józwik Jerzy, Tomiło Paweł |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Rok wydania: | 2024 |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Numer czasopisma: | 22 |
Wolumen/Tom: | 17 |
Numer artykułu: | 5567 |
Strony: | 1 - 22 |
Impact Factor: | 3,1 |
Web of Science® Times Cited: | 0 |
Scopus® Cytowania: | 0 |
Bazy: | Web of Science | Scopus |
Efekt badań statutowych | NIE |
Finansowanie: | Funding: This research was supported by NAWA STER Programme Internationalization of the Doctoral School of Lublin University of Technology—IDeaS of LUT: BPI/STE/2021/1/00022/U/00001MicroGrant Michał Leleń; POLAND project No. 0614/SBAD/1565 of the Institute of Mechanical Technology of Poznan University of Technology; POLAND. The scientific paper co-financed from the funds of the state budget under the program of the Minister of Science under the name Polish Metrology II Programme, project number No. PM-II/SP/0040/2024/02 entitled “Multisensor system for measuring thermo-mechanical interactions together with a comprehensive analysis of the state”, amount of funding 968 000,00 PLN, total project value 968 000,00 PLN, POLAND. |
Materiał konferencyjny: | NIE |
Publikacja OA: | TAK |
Licencja: | |
Sposób udostępnienia: | Witryna wydawcy |
Wersja tekstu: | Ostateczna wersja opublikowana |
Czas opublikowania: | W momencie opublikowania |
Data opublikowania w OA: | 14 grudnia 2024 |
Abstrakty: | angielski |
This paper examines the challenges of machining structural alloy steels for carburizing, with a particular focus on gear manufacturing. TiN0.85-Ti coatings were applied to cutting tool blades to improve machining quality and tool life. The research, supported by mathematical modeling, demonstrated that these coatings significantly reduce adhesive wear and improve blade life. The Kolmogorov–Arnold Network (KAN) was identified as the most effective model comprehensively describing tool life as a function of cutting speed, coating thickness, and feed rate. The results indicate that gear production efficiency can be significantly increased using TiN0.85-Ti coatings. |