Design of a microservices-based architecture for residential energy efficiency monitoring
Artykuł w czasopiśmie
MNiSW
70
Lista 2024
| Status: | |
| Autorzy: | Núñez Ivonne, Rovetto Carlos, Cruz Edmanuel, Smolarz Andrzej, Concepcion Dimas , Cano Elia Esther |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2024 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 4 |
| Wolumen/Tom: | 70 |
| Strony: | 1089 - 1098 |
| Impact Factor: | 0,7 |
| Web of Science® Times Cited: | 0 |
| Scopus® Cytowania: | 0 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 25 listopada 2024 |
| Abstrakty: | angielski |
| With the significant advancement of electrical infrastructure in the context of smart buildings and smart homes, the need arises to overcome the limitations of the traditional energy efficiency control system based on service- oriented architecture (SOA). To address these challenges, this study proposes a distributed architecture based on microservices, with the main objective of improving the performance and stability of these systems. This proposal seeks to enable end users to effectively monitor and control their electrical devices while effectively integrating them into a wide network of power systems. The proposed architecture relies on a series of cloud services that enable better performance and control in energy efficiency management, highlighting key features of microservices such as fault tolerance, performance, and scalability. Using a structural methodology centered on pre- existing components and an iterative approach, a versatile and scalable architecture was designed that addresses current challenges in energy efficiency management. The results show a significant impact on key performance indicators such as demand response, energy savings, and power quality, highlighting the resilience and scalability of the proposed architecture. The conclusions highlight the importance of energy efficiency in reducing the environmental impact and costs associated with electric power, suggesting future improvements in data access and the implementation of advanced machine learning algorithms. |
