Modern programming technologies in the tasks of identification and classification of military aircraft using machine learning algorithms
Fragment książki (Rozdział monografii pokonferencyjnej)
MNiSW
20
Poziom I
Status: | |
Autorzy: | Uhryn Dmytro, Karachevtsev Artem, Terletskyi Taras, Kaidyk Oleh, Talakh Mariya V., Ilin Viktor, Bogachuk Volodymyr V., Kaduk Oleksandr V., Suranchiyeva Zinagul, Omiotek Zbigniew |
Dyscypliny: | |
Aby zobaczyć szczegóły należy się zalogować. | |
Wersja dokumentu: | Drukowana | Elektroniczna |
Język: | angielski |
Strony: | 1 - 6 |
Efekt badań statutowych | NIE |
Materiał konferencyjny: | TAK |
Nazwa konferencji: | Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2024 |
Skrócona nazwa konferencji: | SPIE-IEEE-PSP 2024 |
URL serii konferencji: | LINK |
Termin konferencji: | 27 czerwca 2024 do 29 czerwca 2024 |
Miasto konferencji: | Lublin |
Państwo konferencji: | POLSKA |
Publikacja OA: | NIE |
Abstrakty: | angielski |
This article addresses the development of an intelligent military aircraft identification system using artificial intelligence, machine learning, and deep self-learning technologies to enhance national security and military efficiency. The system aims to automatically and accurately recognize and classify aircraft in images, offering advantages over traditional methods such as higher productivity, speed, accuracy, and the elimination of human error. The importance of deep learning solutions for threat detection and operational efficiency is emphasized. Modern visual data-based object recognition methods and tools are analysed. The methodology includes collecting and preprocessing data, developing a high-precision recognition system based on Yolov8, annotating objects with Roboflow, and creating training, validation, and testing subsets in the yolo format. The paper details the dataset formation process and presents satisfactory results in fast recognition of military aircraft with high classification accuracy. A comparative analysis of Yolov8, R-CNN, and GPT-4 models shows Yolov8's superiority in prediction accuracy and performance. The article describes the model management system for adjusting hyperparameters, selecting object categories, and initiating the training and forecasting process. Testing results demonstrate Yolov8's optimality for military aircraft identification, achieving accurate target identification in complex situations using advanced deep learning algorithms. |