Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
Wireless networks are crucial to modern communication infrastructure, supporting a wide range of applications from personal use to industrial operations. The rapid growth of mobile devices, IoT, and advanced technologies like 5G has heightened the demand for scalable, efficient, and reliable wireless networks. Routing in wireless networks is particularly complex due to the dynamic nature of the medium, device mobility, and diverse topologies. Traditional routing algorithms, though effective in some cases, frequently fail to handle the complexities of contemporary wireless networks. Integrating machine learning technologies with routing algorithms offers a promising solution. In particular, reinforcement learning (RL) has become prevalent in routing due to its ability to operate without the need for extensive datasets. This article evaluates two RL-based routing algorithms, by comparing their average delivery times under various loads across various topologies. This study offers a comprehensive analysis that addresses the importance of different network structures, providing insights into how each algorithm performs across diverse topologies, an aspect not covered in previous surveys.