Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Antosz Katarzyna, Kozłowski Edward, Sęp Jarosław, Prucnal Sławomir
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 1
Wolumen/Tom: 18
Numer artykułu: 148
Strony: 1 - 21
Impact Factor: 3,2
Web of Science® Times Cited: 4
Scopus® Cytowania: 5
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 2 stycznia 2025
Abstrakty: angielski
This article presents an investigation of the use of machine learning methodologies for the prediction of surface roughness in milling operations, using sensor data as the primary source of information. The sensors, which included current transformers, a microphone, and displacement sensors, captured comprehensive machining signals at a frequency of 10 kHz. The signals were subjected to preprocessing using the Savitzky–Golay filter, with the objective of isolating relevant moments of active material machining and reducing noise. Two machine learning models, namely Elastic Net and neural networks, were employed for the prediction purposes. The Elastic Net model demonstrated effective handling of multicollinearity and reduction in the data dimensionality, while the neural networks, utilizing the ReLU activation function, exhibited the capacity to capture complex, nonlinear patterns. The models were evaluated using the coefficient of determination (R²), which yielded values of 0.94 for Elastic Net and 0.95 for neural networks, indicating a high degree of predictive accuracy. These findings illustrate the potential of machine learning to optimize manufacturing processes by facilitating precise predictions of surface roughness. Elastic Net demonstrated its utility in reducing dimensionality and selecting features, while neural networks proved effective in modeling complex data. Consequently, these methods exemplify the efficacy of integrating data-driven approaches with robust predictive models to improve the quality and efficiency of surface.