Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Machrowska Anna, Karpiński Robert, Maciejewski Marcin, Jonak Józef, Krakowski Przemysław, Syta Arkadiusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 25
Numer artykułu: 706
Strony: 1 - 24
Impact Factor: 3,5
Web of Science® Times Cited: 6
Scopus® Cytowania: 7
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 24 stycznia 2025
Abstrakty: angielski
This study focuses on the diagnostic analysis of cartilage damage in the knee joint based on acoustic signals generated by the joint. The research utilizes a combination of advanced signal processing techniques, specifically empirical mode decomposition (EEMD) and detrended fluctuation analysis (DFA), alongside convolutional neural net- works (CNNs) for classification and detection tasks. Acoustic signals, often reflecting the mechanical behavior of the joint during movement, serve as a non-invasive diagnostic tool for assessing the cartilage condition. EEMD is applied to decompose the signals into in- trinsic mode functions (IMFs), which are then analyzed using DFA to quantify the scaling properties and detect irregularities indicative of cartilage damage. The separation of indi- vidual frequency components allows for multi-scale analysis of the signals, with each of the functions resulting from the analysis reflecting local variations in the amplitude and frequency over time and allowing for effective removal of noise present in the signal. The CNN model is trained on features extracted from these signals to accurately classify dif- ferent stages of cartilage degeneration. The proposed method demonstrates the potential for early detection of knee joint pathology, providing a valuable tool for preventive healthcare and reducing the need for invasive diagnostic procedures. The results suggest that the combination of EEMD-DFA for feature extraction and CNN for classification of- fers a promising approach for the non-invasive assessment of cartilage damage.