Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Guz Łukasz, Gaweł Dariusz, Cholewa Tomasz, Siuta-Olcha Alicja, Bocian Martyna, Liubarska Mariia
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 18
Numer artykułu: 679
Strony: 1 - 27
Impact Factor: 3,2
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The APC was funded by LUT, grant no. FD-20/IŚ-6/014. For the measurements, the system developed under project POIR.04.01.02-00-0012/18-00, ‘Development of an Innovative Control System for Heat Supply for Heating of Existing and Newly Built Facilities,’ was used.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 lutego 2025
Abstrakty: angielski
The accurate prediction of heat demand in retrofitted residential buildings is crucial for optimizing energy consumption, minimizing unnecessary losses, and ensuring the efficient operation of heating systems, thereby contributing to significant energy savings and sustainability. Within the framework of this article, the dependence of the energy consumption of a thermo-modernized building on a chosen set of climatic factors has been meticulously analyzed. Polynomial fitting functions were derived to describe these dependencies. Subsequent analyses focused on predicting heating demand using artificial neural networks (ANN) were adopted by incorporating a comprehensive set of climatic data such as outdoor temperature; humidity and enthalpy of outdoor air; wind speed, gusts, and direction; direct, diffuse, and total radiation; the amount of precipitation, the height of the boundary layer, and weather forecasts up to 6 h ahead. Two types of networks were analyzed: with and without temperature forecast. The study highlights the strong influence of outdoor air temperature and enthalpy on heating energy demand, effectively modeled by third-degree polynomial functions with R2 values of 0.7443 and 0.6711. Insolation (0–800 W/m2) and wind speeds (0–40 km/h) significantly impact energy demand, while wind direction is statistically insignificant. ANN demonstrates high accuracy in predicting heat demand for retrofitted buildings, with R2 values of 0.8967 (without temperature forecasts) and 0.8968 (with forecasts), indicating minimal performance gain from the forecasted data. Sensitivity analysis reveals outdoor temperature, solar radiation, and enthalpy of outdoor air as critical inputs.