Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
Lista B
Status:
Warianty tytułu:
Wieloetapowy rzut wiązkowy o wtórnie nierzutujących śladowych podprzestrzeniach węzłowych
Autorzy: Zarzeka-Raczkowska Ewa
Rok wydania: 2013
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 3
Wolumen/Tom: 62
Strony: 81 - 93
Bazy: Baz
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: polski | angielski
Przedstawione w niniejszym artykule założenia i wybrane właściwości odmiany wielo-etapowego rzutu wiązkowego o wtórnie nierzutujących śladowych podprzestrzeniach węzłowych są kolejnym uzupełnieniem pola jedno-rzutowych odwzorowań n-wymiarowej przestrzeni rzutowej P n na płaszczyznę. Prezentowane odwzorowanie realizowane jest etapowo: w poszczególnych krokach tego rzutowania jako rzutnie przyjmujemy podprzestrzenie należące do wiązkowego układu śladowego. Ponadto, istotnym jest, iż rzuty wtórne podprzestrzeni węzłowych są podprzestrzeniami nierzutujący- mi. Przedstawione odwzorowanie znacząco poszerza możliwości konstrukcyjne w zakresie obrazów podprzestrzeni n-wymiarowych, niezależnie od ich rodzaju.
Assumptions and chosen properties of the presented kind of the multistage bundle projection which was named multistage bundle projection with secondary non-projected tracely node subspaces (MBP II) are another important contribution to the theory of one-project mappings of the projective space P n onto a plane. Presented projection is realized by stages. In the particular stages of this projection we adopt subspaces belonging to a pencil trace system as projection planes. Moreover, it is important, that in the presented analysis the secondary projects of node subspaces are the un-projected trace subspaces. Presented mapping significantly extends constructive possibilities in the field of images of n-dimensional subspaces independently on their types.