Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
The primary aim of this study is to conduct a comprehensive comparative evaluation of implicit and explicit finite
element solution methodologies employed in structural analysis. This research examines the characteristics and
performance differences between these two approaches, using two diverse case studies as illustrative examples.
The FEM solution was performed nonlinearly by defining the linear elastic and plasticity properties of the material.
The first case study focuses on a three-point bending test of a beam subjected to a slow deformation rate, while the
second case study examines the damage mechanics of a pressure vessel experiencing a high deformation rate. It
was found that the implicit solution method operates under the premise that displacement is independent of time,
allowing for a more stable analysis in certain scenarios. On the other hand, the explicit method inherently incor-
porates time as a variable, making displacement a function of time. Once a solid understanding of the system’s
response is established, transitioning to explicit methods for more dynamic scenarios can lead to a more compre-
hensive and effective resolution of complex engineering problems. By carefully selecting the appropriate analysis
method based on the specific characteristics of the loading conditions and the nature of the forces involved, engi-
neers can optimize their simulations and enhance the reliability of their results.