Zgadzam się
Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.
Web of Science | Scopus | Google Scholar | EBSCO | SCImago
Efekt badań statutowych
NIE
Finansowanie:
This research is funded by the project “Generation, storage and processing of energy using selected electrical systems” No. 0212/SBAD/0614 financed by the Polish Ministry of Education and Science. This study was financed in part by the Faculty of Engineering Management (WIZ) of Bialystok University of Technology under the project WZ/WIZ-INZ/2/2025 (Olga Orynycz) and by the Institute of Mechanical Engineering, Warsaw University of Life Sciences.
This work concerns the experimental verification of changes in the energy efficiency of photovoltaic installations through the use of bifacial modules. For this purpose, an experimental stand was designed and built for the comparative analysis of the efficiency of two types of photovoltaic panels: bifacial (bPV) and monofacial (mPV). The tests consisted of placing the panels at different heights above the ground surface and at different angles. During the tests, three substrates with different albedo were taken into account: green grass, gray concrete (fabric), and white snow (polystyrene). The tests for both types of panels were carried out simultaneously (in parallel), which guaranteed the same environmental conditions (temperature and solar radiation intensity). Based on the results of the voltage and current measurements for different angles of PV module inclination and, for bPV panels, different heights above the ground surface and different types of substrate, a series of current–voltage characteristics and power characteristics were plotted. The “additional” energy efficiency of bifacial panels compared to monofacial panels was also determined. It was shown that under favorable conditions, using bifacial panels instead of monofacial panels can increase the production of electricity by more than 56% from structures of the same dimensions. The research results can be of great value when designing photovoltaic installations.