Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Fakhari Amir Hossein, Salahi Mohammad Mahdi, Gharehghani Ayat, Hunicz Jacek, Mikulski Maciej, Andwari Amin Mahmoudzadeh
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Wolumen/Tom: 105
Strony: 1408 - 1424
Impact Factor: 8,3
Web of Science® Times Cited: 2
Scopus® Cytowania: 2
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The experimental research was supported by the commissioned task entitled “VIA CARPATIA Universities of Technology Network named after the President of the Republic of Poland Lech Kaczy´nski”, contract No. MEiN/2022/DPI/2575. Authors wish to thank AVL List GmbH for making the simulation software available within the AVL University Partnership Program framework. Authors would like to acknowledge the financial supports provided by Business Finland through CASEMATE project (Ref. 2911/31/2022) under W¨artsil¨a ZEM (zero emission marine) ecosystem.
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Reactivity Controlled Compression Ignition (RCCI) is a promising approach for decarbonizing marine engines by integrating green hydrogen into natural gas (NG) supply streams. This dual-fuel strategy improves efficiency and minimizes emissions. To simulate RCCI engines effectively, accurate chemical kinetic mechanisms tailored for internal combustion engines are crucial. This study develops a reduced mechanism with 60 species and 372 reactions, optimizing it for ignition delay time (IDT) and laminar flame speed (LFS). Laboratory tests validate the mechanism, showing a 20% improvement in IDT prediction accuracy over existing NG-diesel models, with simulation errors reduced to 0.2 ms. CFD simulations using the mechanism evaluate H₂-enriched NG RCCI combustion, revealing that small-scale H₂ addition enhances combustion efficiency by reducing methane slip and CO emissions. A 30% H₂ substitution (energy ratio) improves combustion efficiency by 3%, despite a 50% in- crease in NOx emissions, which remain under 93 ppm. This study proposes a novel mechanism for RCCI com- bustion simulations, enhancing predictive accuracy and revealing key benefits of H2-enriched NG combustion.