Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

Status:
Autorzy: Sikora Janusz, Polychronopoulos Nickolas D., Konstantinous Moustris, Karakasidis Theodoros, Vlachopoulos John, Sarris Ioannis E., Krasinskyi Volodymyr
Rok wydania: 2025
URL do źródła LINK
Język: angielski
Źródło: 40th International Conference of the Polymer Processing Society - PPS-40
Miasto wystąpienia: Aucklan
Państwo wystąpienia: NOWA ZELANDIA
Efekt badań statutowych NIE
Abstrakty: angielski
The interest in the issues of artificial intelligence of many different centers around the world has brought specific results that have already found practical and widespread applications. "Artificial intelligence" has become increasingly popular and more frequently used in recent years. The rapid development of electronics and computer science is conducive to the development of this field of science. "Intelligent machines" are needed by humans to create and discover new relationships, and artificial intelligence has significantly influenced various areas of technology and, above all, has achieved great implementation success in areas where a large amount of data is available. It is also increasingly used in the processing of polymer materials. The designs of screws of plasticizing systems of extruders are largely proprietary and there is very little specific information available in the literature. Our team generated a set of many extrusion screw designs using computer simulation software for the extrusion process, including the transport of solids, melting and pumping of the melt. The parameters and results obtained were entered into four machine learning algorithms. The performance of the four algorithms was evaluated by comparing the predictions of each algorithm with the corresponding simulation results. For three of the algorithms, we obtained satisfactory performance, and the best one was additionally evaluated using a previously “unseen” dataset consisting of two screws with defined diameters. It is argued that the same ML methodologies can be applied to datasets of existing real-world screw designs. Our conclusion is that the data-driven methodology presented in this paper can be used in the design of extruder screws, leveraging knowledge gained from the development of existing designs.