Feature Fusion Graph Consecutive-Attention Network for Skeleton-Based Tennis Action Recognition
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
| Status: | |
| Autorzy: | Powroźnik Paweł, Skublewska-Paszkowska Maria, Dziedzic Krzysztof, Barszcz Marcin |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 10 |
| Wolumen/Tom: | 15 |
| Strony: | 1 - 24 |
| Impact Factor: | 2,5 |
| Web of Science® Times Cited: | 0 |
| Scopus® Cytowania: | 0 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 9 maja 2025 |
| Abstrakty: | angielski |
| Human action recognition has become a key direction in computer vision. Deep learning models, particularly when combined with sensor data fusion, can significantly enhance various applications by learning complex patterns and relationships from di- verse data streams. Thus, this study proposes a new model, the Feature Fusion Graph Consecutive-Attention Network (FFGCAN), in order to enhance performance in the clas- sification of the main tennis strokes: forehand, backhand, volley forehand, and volley backhand. The proposed network incorporates seven basic blocks that are combined with two types of module: an Adaptive Consecutive Attention Module, and Graph Self- Attention module. They are employed to extract joint information at different scales from the motion capture data. Due to focusing on relevant components, the model enriches the network’s comprehension of tennis motion data representation and allows for a more invested representation. Moreover, the FFGCAN utilizes a fusion of motion capture data that generates a channel-specific topology map for each output channel, reflecting how joints are connected when the tennis player is moving. The proposed solution was verified utilizing three well-known motion capture datasets, THETIS, Tennis-Mocap, and 3DTen- nisDS, each containing tennis movements in various formats. A series of experiments were performed, including data division into training (70%), validating (15%), and testing (15%) subsets. The testing utilized five trials. The FFCGAN model obtained very high results for accuracy, precision, recall, and F1-score, outperforming the commonly applied networks for action recognition, such as the Spatial-Temporal Graph Convolutional Net- work or its modifications. The proposed model demonstrated excellent tennis movement prediction ability. |
