Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Tai Jan Lean, Sultan Mohamed Thariq Hameed, Łukaszewicz Andrzej, Józwik Jerzy, Oksiuta Zbigniew, Shahar Farah Syazwani
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 11
Wolumen/Tom: 18
Numer artykułu: 2466
Strony: 1 - 34
Impact Factor: 3,2
Web of Science® Times Cited: 1
Scopus® Cytowania: 1
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 24 maja 2025
Abstrakty: angielski
Fiber-reinforced polymer (FRP) pipes have emerged as a preferred alternative to conventional metallic piping systems in various industries, including chemical processing, marine, and oil and gas industries, owing to their superior corrosion resistance, high strength-to-weight ratio, and extended service life. However, ensuring the long-term reliability and structural integrity of FRP pipes presents significant challenges, primarily because of their anisotropic and heterogeneous nature, which complicates defect detection and characterization. Traditional non-destructive testing (NDT) methods, which are widely applied, often fail to address these complexities, necessitating the adoption of advanced digital techniques. This review systematically examines recent advancements in digital NDT approaches with a particular focus on their application to composite materials. Drawing from 140 peer-reviewed articles published between 2016 and 2024, this review highlights the role of numerical modeling, simulation, machine learning (ML), and deep learning (DL) in enhancing defect detection sensitivity, automating data interpretation, and supporting predictive maintenance strategies. Numerical techniques, such as the finite element method (FEM) and Monte Carlo simulations, have been shown to improve inspection reliability through virtual defect modeling and parameter optimization. Meanwhile, ML and DL algorithms demonstrate transformative capabilities in automating defect classification, segmentation, and severity assessment, significantly reducing the inspection time and human dependency. Despite these promising developments, this review identifies a critical gap in the field: the limited translation of advanced digital methods into field-deployable solutions specifically tailored for FRP piping systems. The unique structural complexities and operational demands of FRP pipes require dedicated research for the development of validated digital models, application-specific datasets, and industry-aligned evaluation protocols. This review provides strategic insights and future research directions aimed at bridging the gap and promoting the integration of digital NDT technologies into real-world FRP pipe inspection and lifecycle management frameworks.