Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Zarzyka Iwona, Krzykowska Beata, Hęclik Karol, Frącz Wiesław, Janowski Grzegorz, Bąk Łukasz, Klepka Tomasz, Bieniaś Jarosław, Ostapiuk Monika, Tor-Świątek Aneta, Droździel-Jurkiewicz Magda, Paciorek-Sadowska Joanna, Borowicz Marcin, Tomczyk Adam, Falkowska Anna, Kuciej Michał
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 11
Wolumen/Tom: 18
Numer artykułu: 2664
Strony: 1 - 23
Impact Factor: 3,2
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The research leading to these results has received funding from the commissioned task entitled “VIA CARPATIA Universities of Technology Network, named after the President of the Republic of Poland Lech Kaczy ´nski”, under the special purpose grant from the Minister of Science and Higher Education, contract no. MEiN/2022/DPI/2578, action entitled “ISKRA—building inter- university research teams”.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 5 czerwca 2025
Abstrakty: angielski
This study focused on hybrid nanobiocomposite polymers produced with the use of poly(3-hydroxybutyrate), P3HB and aliphatic polyurethane (PU) as a matrix, including variable quantities of organomodified montmorillonite (Cloisite®30B). Mechanical, thermal, and biodegradability tests were conducted to evaluate their properties. The nanobiocom- posites were tested using monotonic tensile tests, which revealed that the addition of PU and organomodified montmorillonite reduced the stiffness and strain at break compared to native P3HB. The material’s yield strength was higher for P3HB, while the PU-modified composites exhibited lower stiffness and increased ductility, especially with lower amounts of clay. Scanning electron microscopy (SEM) images showed that cracks in the samples propagated more rapidly as the clay content increased. The bending test showed that the P3HB–PU composites and the nanobiocomposites exhibited lower bending strength and elongation at break compared to pure polyester. However, the composites with lower clay content showed better performance, suggesting that clay promotes ductility to some extent. The Charpy impact tests indicated an increase in impact strength for the composites with the addition of PU and montmorillonite, especially for the samples with 1 wt.% clay. Biodegradability testing showed that P3HB has a biodegradability of 63.21%. However, the addition of clay reduced biodegradability, with a notable decrease as the clay content increased. The biodegradation of composites with 1 and 2% by mass clay was higher than that of P3HB. Thermal analysis indicates an improvement in the thermal stability of the nanomaterials, with the 1% by mass clay sample showing the highest decomposition onset temperature (263 ◦C). Overall, the study demonstrated that the presence of PU and montmorillonite moderated the mechanical and thermal properties and biodegradation of P3HB, with the optimal performance observed in the composites with 1% by mass clay.