Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Karpiński Paweł, Ambrożkiewicz Bartłomiej, Czyż Zbigniew, Litak Grzegorz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 13
Wolumen/Tom: 15
Numer artykułu: 6972
Strony: 1 - 21
Impact Factor: 2,5
Web of Science® Times Cited: 1
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 21 czerwca 2025
Abstrakty: angielski
This study presents the experimental results of an energy harvesting system comprising a cylindrical bluff body coupled with a cantilever beam. A piezoelectric sensor was installed on the beam to generate electrical voltage during the object’s vibrations at the beam’s free end. The research aimed to evaluate the impact of the bluff body’s mass and diameter on the efficiency of the piezoelectric energy harvesting system. Vibrations of the test object were induced by airflow within a chamber of a closed-loop wind tunnel. Five different bluff body masses were analyzed for each of three cylindrical diameters across an airflow velocity range of 1 m/s to 10 m/s. These experiments allowed for the recording of a series of voltage signals over time. The signals were then subjected to Fast Fourier Transform (FFT) analysis. Subsequently, the relationship between vibration frequency and airflow velocity was examined. The peak-to-peak voltage value was also analyzed to provide an overall assessment of the energy harvesting efficiency of the system under investigation. Finally, the 0–1 test for chaos was additionally employed as a diagnostic tool to assess the complexity of system dynamics based on time series data. This test allowed for distinguishing between oscillatory behavior and cases where the system became trapped in a potential well, revealing key transitions in dynamic regimes.