Unveiling the Fundamental Principles of Reconfigurable Resistance States in Silver/Poly(Ethylene Glycol) Nanofluids
Artykuł w czasopiśmie
MNiSW
200
Lista 2024
| Status: | |
| Autorzy: | Nikitin Daniil, Biliak Kateryna, Protsak Mariia, Adejube Blessing, Ali-Ogly Suren, Škorvanková Kateřina, Červenková Veronika, Katuta Ronaldo, Tosca Marco, Hanuš Jan, Černochová Zulfiya, Černoch Peter, Štěpánek Petr, Boiko Oleksandr, Szymoniak Paulina, Schönhals Andreas, Faupel Franz, Biederman Hynek, Vahl Alexander, Choukourov Andrei |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 35 |
| Wolumen/Tom: | 12 |
| Numer artykułu: | e05103 |
| Strony: | 1 - 14 |
| Impact Factor: | 14,1 |
| Web of Science® Times Cited: | 1 |
| Scopus® Cytowania: | 1 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Finansowanie: | The work was supported via the grant GACR 23–06925S from the Czech Science Foundation. D.N., K.B., and M.P. also acknowledge the Czech- German Mobility grant number 8J23DE016 from the Ministry of Education, Youth and Sports. A.V., B.A., and F.F. acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 434 434 223 – SFB 1461. A.V. and B.A. also acknowledge German Academic Exchange Service (DAAD) – Project-ID: 57 654 440. Z.ˇC. P.ˇC. and P.Š. acknowledge the support of the Consortium Infrastructural Grant from the Ministry of Education, Youth, and Sports, with the number LM2023053-EATRIS-CZ-ERIC. O.B. acknowledges the support through the pro-quality program of the Lublin University of Technology: “Grants for financing the costs of interdisciplinary high-scoring publication” (Grant No. 5/GnG/2022). Open access funding enabled and organized by Projekt DEAL. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 26 czerwca 2025 |
| Abstrakty: | angielski |
| Developing novel memristive systems aims to implement key principles of biological neuron assemblies – plasticity, adaptivity, and self-organization – into artificial devices for parallel, energy-efficient computing. Solid-state memristive devices, such as crossbar arrays and percolated nanoparticle (NP) networks, already demonstrate these properties. However, closer similarity to neural networks is expected from liquid-state systems, including polymer melts, which remain largely unexplored. Here, the resistive switching in silver/poly(ethylene glycol) (Ag/PEG) nanofluids, prepared by depositing gas-aggregated Ag NPs into PEGs of varying molecular mass, is investigated. These systems form long-range conductive NP bridges with reconfigurable resistance states in response to an electric field. The zeta-potential of Ag NPs and molecular mobility of PEG determine the prevalence of low resistance (ohmic) state, high resistance states (poor conductance) or intermediate transition states governed by space-charge-limited conduction or electron tunneling. The occurrence of these states is given by the interparticle gaps, which are determined by the conformation of PEG molecules adsorbed on the NPs. It is presented, for the first time, an equivalent circuit model for the Ag/PEG system. These findings pave the way to adopt polymer melts as matrices for neuromorphic engineering and bio-inspired electronics. |
