Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Karpiński Robert, Szabelski Jakub
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 7
Wolumen/Tom: 16
Numer artykułu: 254
Strony: 1 - 19
Impact Factor: 5,2
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 9 lipca 2025
Abstrakty: angielski
Poly(methyl methacrylate) (PMMA)-based bone cements are widely used in orthopaedic surgery, yet their inherent brittleness, lack of bioactivity, and exothermic polymerization remain critical limitations. Recent strategies have focused on modifying PMMA with functional additives to improve not only mechanical performance but also thermal behaviour and biological interactions. This study investigates the mechanical properties of two commercial PMMA cements—Palamed® (antibiotic-free) and Refobacin Plus G (gentamicin-loaded)—reinforced with glassy carbon (GC) particles of two different grain sizes (0.4–1.2 µm and 20–50 µm) and various concentrations. The results demonstrate that coarse GC particles (20–50 µm) significantly reduced compressive strength, particularly in the antibiotic-loaded cement. In contrast, the incorporation of fine GC particles (0.4–1.2 µm) did not markedly impair mechanical performance in Palamed®, suggesting better compatibility with the PMMA matrix. In addition to mechanical enhancement, the structural and chemical stability of glassy carbon may contribute to improved biological response and reduced polymerization heat. These findings highlight the potential of glassy carbon as a functional additive for designing PMMA-based biomaterials that combine improved mechanical properties with favourable characteristics for long-term implant integration.