Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
200
Lista 2024
Status:
Autorzy: Zagórski Ireneusz, Weremczuk Andrzej, Kulisz Monika, Skoczylas Agnieszka
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: Pt E
Wolumen/Tom: 256
Numer artykułu: 118523
Strony: 1 - 17
Impact Factor: 5,6
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: The authors would like to thank the Scientific Council of the Discipline of Mechanical Engineering for financing the research and the publication fee: Funding for the present work was provided by FD-20/IM-5/138, FD-20/IM-5/131, FD-20/IM-5/061 and FD-20/IM-5/107.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 24 lipca 2025
Abstrakty: angielski
Modern milling methods should ensure high quality and stability of machining processes. Increased manufacturing demands require the use of advanced machining methods. The aim is to use milling as both a preliminary (rough) and finishing operation, eliminating e.g. the grinding process. Vibrations generated during machining are an integral part of the process, however, they should be minimized. Therefore, the current research focuses on the vibrations analysis during magnesium alloy rough milling. This alloy is often used in various industries and the application and use of magnesium alloys is considered innovative. The main objective of the research was an assessment of vibration and stability during dry end milling processes and to study the influence of machining technological parameters and end mill geometry. The basis of the research carried out is the recording and analysis of the vibration acceleration signal in the time domain. In the research were used end mills with different edge geometry (different rake and helix angles). A frequency domain analysis of selected vibration signals was also performed (Fast Fourier Transform spectral analysis). Vibration acceleration parameters such as maximum, peak-to-peak value, root mean square and Composite Multiscale Entropy were also determined. It was noticed that for certain milling parameters, increasing the rake angle causes a greater degree of disturbance of the measured acceleration signal. In the vast majority of cases observed, the maximum does not exceed 1 m/s2, which may indicate a very good stability of the implemented process, despite the use of effective, high values of machining parameters.