Mechanistic–empirical porosity model for basalt powder-cement pastes under thermal load conditions
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
| Status: | |
| Autorzy: | Rumiński Patryk, Szeląg Maciej |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Wolumen/Tom: | 492 |
| Numer artykułu: | 142916 |
| Strony: | 1 - 18 |
| Impact Factor: | 8,0 |
| Web of Science® Times Cited: | 0 |
| Scopus® Cytowania: | 0 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| URL danych badawczych | LINK |
| Finansowanie: | This research was funded in whole by the National Science Centre of Poland within the project No. 2021/43/D/ST8/01128 (SONATA 17). For the purpose of Open Access, the author has applied a CC-BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 30 lipca 2025 |
| Abstrakty: | angielski |
| Basalt powder (BP) is an abundant low-carbon by-product whose influence on the high-temperature behaviour of cement pastes is largely undocumented. Portland-cement pastes containing 0–50 % BP were cured and then heated to 100, 300, 500 and 700 ◦C. Compressive and flexural strengths, density, water absorption were measured, while mercury-intrusion porosimetry, X-ray fluorescence, and X-ray diffraction related these changes to phase and pore evolution. The work is completed by a hybrid semi-empirical porosity model, coupling a particle-packing equation for initial porosity with a non-linear temperature function. The results show that replacing 5 % of cement with BP acts as a reactive filler, raising ambient compressive and flexural strengths by 3.0 % and 6.7 %. Higher BP dosages slightly reduce room-temperature compressive strength yet markedly improve thermal resistance, i.e., pastes with 30 % BP retain 75 % of their initial flexural strength after 700 ◦C, whereas the reference paste retains only 10 %. Microstructural evidence attributes the improvement to lower portlandite content, formation of thermally stable aluminosilicate hydrates and densification of the solid skel- eton, which offsets the increase in total porosity. The six-parameter model predicts porosity for all mixes and temperatures with a root-mean-square error of 2.2 percentage points and unbiased, homoscedastic residuals. Overall, BP is demonstrated to be an effective, sustainable additive for improving the high-temperature dura- bility of cementitious matrices. |
