Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Wang Yuke, Chen Yuyuan, Marchelina Nadella
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Wolumen/Tom: 458
Numer artykułu: 139678
Strony: 1 - 12
Impact Factor: 8,0
Web of Science® Times Cited: 6
Scopus® Cytowania: 6
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
Biomineralization technology offers an environmentally sustainable alternative to traditional concrete crack repair methods by utilizing the filling and sealing properties of calcium carbonate precipitation (CCP). Previous research on biomineralization for crack remediation has established its efficacy in addressing cracks with widths not exceeding 1 mm. This study primarily investigates the repair of concrete cracks ranging from 1 to 2 mm in width. A novel biomineralization technique, known as soybean urease-induced calcium carbonate precipitation (SICP), was employed in conjunction with crack-filling materials (CFM) to establish a two-component crack-filling system. The utilized CFM include fiber additives such as lignin fibers (LF), basalt fibers (BF), and polypropylene fibers (PPF), along with lightweight aggregates like fine-silty sand (FSS). A comprehensive series of laboratory experiments, including ultrasonic testing, unconfined compressive strength (UCS) assessments, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis, were conducted to evaluate the repair effectiveness of SICP combined with various CFMs. The findings indicate that SICP-CFM repairing measures effectively fill and seal artificial cracks within mortar specimens, significantly reducing sonic time values for repaired specimens. Notably, specimens repaired using the SICP-PPF measure demonstrated optimal performance regarding UCS improvement range and strength restoration rate. This can be attributed to the denser and more robust structure of CCP-PPF composites resulting from differences in precipitation patterns and adhesive characteristics of calcium carbonate. Furthermore, the calcium carbonate present in CCP-PPF composites was confirmed to be calcite with superior crystallinity.