Real-Time Image Analysis for Intelligent Aircraft De-Icing Decision Support Systems
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
| Status: | |
| Autorzy: | Korga Sylwester |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 14 |
| Wolumen/Tom: | 15 |
| Numer artykułu: | 7752 |
| Strony: | 1 - 17 |
| Impact Factor: | 2,5 |
| Web of Science® Times Cited: | 0 |
| Scopus® Cytowania: | 0 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 10 lipca 2025 |
| Abstrakty: | angielski |
| Aircraft icing and snow accumulation are significant threats to flight safety and operational efficiency, necessitating rapid and accurate detection methods. The aim of this study was to develop and comparatively evaluate artificial intelligence (AI) models for the real-time detection of ice and snow on aircraft surfaces using vision systems. A custom dataset of annotated aircraft images under various winter conditions was prepared and augmented to enhance model robustness. Two training approaches were implemented: an automatic process using the YOLOv8 framework on the Roboflow platform and a manual process in the Google Colab environment. Both models were evaluated using standard object detection metrics, including mean Average Precision (mAP) and mAP@50:95. The results demonstrate that both methods achieved comparable detection performance, with final mAP50 values of 0.25–0.3 and mAP50-95 values around 0.15. The manual approach yielded lower training losses and more stable metric progression, suggesting better generalization and a reduced risk of overfitting. The findings highlight the potential of AI-driven vision systems to support intelligent de-icing decision-making in aviation. Future research should focus on refining localization, minimizing false alarms, and adapting detection models to specific aircraft components to further enhance operational safety and reliability. |
