Analysis of instantaneous energy consumption and recuperation in electric buses during SORT tests using linear and neural network models
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
| Status: | |
| Autorzy: | Kozłowski Edward, Zimakowska-Laskowska Magdalena, Wiśniowski Piotr, Šnauko Boris, Laskowski Piotr, Laskowski Jan, Matijošius Jonas, Świderski Andrzej, Török Adam |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 19 |
| Wolumen/Tom: | 18 |
| Numer artykułu: | 5107 |
| Strony: | 1 - 28 |
| Impact Factor: | 3,2 |
| Web of Science® Times Cited: | 4 |
| Scopus® Cytowania: | 6 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 25 września 2025 |
| Abstrakty: | angielski |
| With the growing deployment of electric buses (e-buses), accurate energy use modelling has become essential for fleet optimisation and operational planning. Using the SORT methodology, this study analyses instantaneous energy consumption and recuperation (IECR). Three vehicle configurations were tested (one battery with pantograph, four batteries, and eight batteries), each with ten repeatable runs. Four approaches were compared: a baseline linear regression, an extended linear model (ELM) due to the state, a feed-forward neural network, and a recurrent neural network (RNN). The extended linear model achieved a determination coefficient of R2 = 0.9124 (residual standard deviation 4.26) compared with R2 = 0.7859 for the baseline, while the determination coefficient for the RNN is 0.9343, and the RNN provided the highest accuracy on the test set (the correlation coefficient between real and predicted values is 0.9666). The results confirm the dominant influence of speed and acceleration on IECR and show that battery configuration mainly affects consumption during acceleration. Literature-consistent findings indicate that regenerative systems can recover 25–51% of braking energy, with advanced control methods further improving recovery. Despite non-normality and temporal dependence of residuals, the state-aware linear model remains interpretable and competitive, whereas recurrent networks offer superior fidelity. These results support real-time energy management, charging optimisation, and reliable range prediction for electric buses in urban public transport. |
