Performance optimization of photovoltaic panels using hybrid nanofluid cooling with titanium oxide and aluminium oxide
Artykuł w czasopiśmie
MNiSW
20
Lista 2024
| Status: | |
| Autorzy: | Abdelhafez Eman, Abd-Alhamid Fedaa, Hamdan Mohammad, Alsaqoor Sameh, Borowski Gabriel, Musa Akram, Ajib Salman |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 6 |
| Wolumen/Tom: | 26 |
| Strony: | 108 - 115 |
| Scopus® Cytowania: | 2 |
| Bazy: | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Otwarte czasopismo |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 3 maja 2025 |
| Abstrakty: | angielski |
| High operating temperatures, particularly under high solar irradiance, significantly reduce the efficiency of photovoltaic (PV) modules. The performance of PV systems declines as cell temperatures rise, underscoring the need for effective cooling mechanisms, particularly in regions with extreme thermal conditions. Hybrid nanofluids have emerged as a promising solution for thermal management in photovoltaic systems due to their enhanced thermophysical properties. Superior heat dissipation, convective heat transfer, light trapping, and thermal stability are all coupled with relatively low production costs. The effect of different concentrations of titanium oxide (TiO₂) and aluminum oxide (Al₂O₃) hybrid nanofluids on the thermal and electrical performances of photovoltaic modules is investigated in this study. An experimental setup was set up with five identical PV modules of which one was a reference. Meanwhile, the other four were subjected to various nanofluid concentrations on their rear surface. Real-time backside temperature profiles were recorded using K-type thermocouples, and electrical output parameters were measured using a data logger. Findings showed that, compared to the control, nanofluid coating improved the performance of the modules. In the absence of Al₂O₃, the optimal enhancement was found to be 0.4% TiO₂, which led to a 14.98% increase in output power and a 15.56% increase in efficiency. The results demonstrated here suggest that hybrid nanofluids may be a means to improve photovoltaic cooling strategies and increase the overall energy conversion efficiency. |
