Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Kotyra Andrzej, Gromaszek Konrad
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Elektroniczna
Język: angielski
Numer czasopisma: 19
Wolumen/Tom: 18
Numer artykułu: 5219
Strony: 1 - 17
Impact Factor: 3,2
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 października 2025
Abstrakty: angielski
The paper presents the application of high-speed flame imaging combined with convolutional neural networks (CNNs) for determining different states of biomass–coal co-combustion in terms of thermal power and excess air coefficient. The experimental setup and methodology used in a laboratory-scale co-combustion system are described, highlighting tests conducted across nine defined operational variants. The performance of several state-of-the-art CNN architectures was examined, focusing particularly on those achieving the highest classification metrics and exploring the dependence of input image resolution and applying a transfer learning paradigm. By benchmarking various CNNs on a large, diverse image dataset without preprocessing, the research advances intelligent, automated control systems for improved stability, efficiency, and emissions control, bridging advanced visual diagnostics with real-time industrial applications. The summary includes recommendations and potential directions for further research related to the use of image data and machine learning techniques in industry.