Development of Numerical Models of Degraded Pedestrian Footbridges Based on the Cable-Stayed Footbridge over the Wisłok River in Rzeszów
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
| Status: | |
| Autorzy: | Ziaja Dominika, Błazik-Borowa Ewa |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 19 |
| Wolumen/Tom: | 15 |
| Strony: | 1 - 22 |
| Impact Factor: | 2,5 |
| Web of Science® Times Cited: | 0 |
| Scopus® Cytowania: | 0 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Finansowanie: | The research leading to these results has received funding from the commissioned task entitled “VIA CARPATIA Universities of Technology Network named after the President of the Republic of Poland Lech Kaczyński”, under the special purpose grant from the Minister of Science, contract no. MEiN/2022/DPI/2578 action entitled “In the neighborhood—inter-university research internships and study visits”. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 8 października 2025 |
| Abstrakty: | angielski |
| This article aims to perform system identification of a nearly 30-year-old cable-stayed steel footbridge over the Wisłok River in Rzeszów (Poland). The design documentation of the bridge has been lost, and since its construction, the footbridge has been subject to renovations. The structure is highly susceptible to pedestrian traffic, and before any actions are taken to improve the comfort of use, it is necessary to create and validate a numerical model and assess the force distribution in the structure. Models are often built as mappings of an ideal structure. However, real structures are not ideal. The comparison of numerical and measured data can allow for an indication of potential damage areas. Two main purposes of the article have been formulated: (1)Development of a numerical model of an old footbridge, whose components have been degraded due to long-term use. Changes, compared to the ‘original’, focused on elongation of the cables due to rheology and a decrease in their tension. (2) Demonstrate the challenges in modeling and validating this type of bridge. In the article, the result of the numerical simulation (Finite Element Method and Ansys2024 R2 was applied, the verification was made in RFEM6) for models with different boundary conditions and varied pre-tension in cables was compared with the results of static and dynamic examination of a real object. The dynamic tests showed an uneven distribution of pre-tension in cables. The ratio of the first natural frequencies of inner cables on the north side is as high as 16%. The novelty demonstrated in the article is that static tests are insufficient for proper system identification; the same value of vertical displacement can be obtained for a selected static load, with varied tension in cables. Therefore, dynamic testing is essential. Full model updating requires a multicriteria approach, which will be made in the future. |
