Effect of Low- and High-Si/Al Synthetic Zeolites on the Performance of Renovation Plasters
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
| Status: | |
| Autorzy: | Styczeń Joanna, Majewski Jacek |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 20 |
| Wolumen/Tom: | 18 |
| Numer artykułu: | 4710 |
| Strony: | 1 - 24 |
| Impact Factor: | 3,2 |
| Web of Science® Times Cited: | 0 |
| Scopus® Cytowania: | 0 |
| Bazy: | Web of Science | Scopus |
| Efekt badań statutowych | NIE |
| Finansowanie: | This research was funded in whole or in part by the National Science Centre, Poland no. UMO-2021/41/N/ST8/02458. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AMM) version arising from this submission. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 14 października 2025 |
| Abstrakty: | angielski |
| The appropriate selection of renovation plaster properties is essential for ensuring the durability and effectiveness of conservation works. This study focused on the design and characterization of cement-based renovation mortars modified with synthetic zeolites with different Si/Al ratios. It was assumed that high-silica zeolites would provide more favorable mechanical and hygric performance than low-silica types. Owing to their porous structure and pozzolanic reactivity, zeolites proved to be effective additives, enhancing both the microstructure and functionality of the mortars. The modified mixtures exhibited increased total porosity, higher capillary absorption, and improved moisture transport compared with the reference mortar based on CEM I 52.5R. Dynamic vapor sorption tests confirmed that the zeolite-containing mortars achieved Moisture Buffer Values (MBV) above 2.0 g/m2, which corresponds to the “excellent” moisture buffering class. Electrical resistivity measurements further demonstrated the relationship between denser microstruc- ture and enhanced durability. At the frequency of 10 kHz, the electrical resistivity of the reference mortar reached 43,858 Ω·m, while mortars with 15% ZSM-5 and 15% Na-A achieved 62,110 Ω·m and 21,737 Ω·m. These results show that the addition of high-silica zeolite promotes the formation of a denser and more insulating matrix, highlighting the po- tential of this method for non-destructive quality assessment. The best overall performance was observed in mortars containing the high-silica zeolite ZSM-5. A 35% replacement of cement with ZSM-5 increased compressive strength by 10.5% compared with the reference mortar R (4.3 MPa). Frost resistance tests showed minimal mass loss (0.03% at 15% and 1.79% at 35% replacement), and ZSM-5 mortars also maintained integrity under salt crystal- lization. These improvements were attributed to the reaction of reactive SiO2 and Al2O3 from the zeolites with Ca(OH)2, leading to the formation of additional C-S-H. A higher Si/Al ratio promoted a denser, fibrous C-S-H morphology, as confirmed by SEM, which explains the improved strength and durability of mortars modified with ZSM-5. |
