Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Lista 2024
Status:
Autorzy: Zhaparova Sayagul, Kulisz Monika, Kospanov Nurzhan, Ibrayeva Anar, Bayazitova Zulfiya, Kurmanbayeva Aigul
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 11
Wolumen/Tom: 12
Numer artykułu: 411
Strony: 1 - 29
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 1 listopada 2025
Abstrakty: angielski
Urban air pollution caused by vehicular emissions remains one of the most pressing environmental challenges, negatively affecting both public health and climate processes. In Kokshetau, Kazakhstan, where electric vehicle (EV) adoption accounts for only 0.019% of the total fleet and charging infrastructure is nearly absent, reducing transport-related emissions requires short-term and cost-effective solutions. This study proposes an integrated approach combining urban ecology principles with computational modeling to optimize traffic signal control for emission reduction. An artificial neural network (ANN) was trained using intersection-specific traffic data to predict emissions of carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM2.5). The ANN was incorporated into a nonlinear optimization framework to determine traffic signal timings that minimize total emissions without increasing traffic delays. The results demonstrate reductions in emissions of CO by 12.4%, NOx by 9.8%, SO2 by 7.6%, and PM2.5 by 10.3% at major congestion hotspots. These findings highlight the potential of the proposed framework to improve urban air quality, reduce ecological risks, and support sustainable transport planning. The method is scalable and adaptable to other cities with similar urban and environmental characteristics, facilitating the transition toward eco-friendly mobility and integrating data-driven traffic management into broader climate and public health policies.