Macroporous Hydroxyapatite-Based Bone Scaffolds Loaded with CAPE Derivatives: A Strategy to Reduce Oxidative Stress and Biofilm Formation
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
| Status: | |
| Autorzy: | Kazimierczak Paulina, Balaha Marwa, Pałka Krzysztof, Wessely-Szponder Joanna, Wójcik Michał, di Giacomo Viviana, De Filippis Barbara, Przekora Agata |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 22 |
| Wolumen/Tom: | 18 |
| Numer artykułu: | 5074 |
| Strony: | 1 - 17 |
| Impact Factor: | 3,2 |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 7 listopada 2025 |
| Abstrakty: | angielski |
| Caffeic acid phenethyl ester (CAPE), a polyphenol from propolis, is well recognized for its anti-inflammatory, antioxidant, antimicrobial, and osteogenic properties. This study aimed to develop macroporous bone scaffolds composed of a chitosan/agarose matrix reinforced with nanohydroxyapatite and enriched with stable CAPE derivatives to enhance their biomedical potential for applications in bone tissue engineering and regenerative medicine. A comprehensive evaluation of microstructural and biological properties of the produced scaffolds was conducted. The fabricated scaffolds exhibited high porosity ( 49–60%) with in- terconnected pores and compressive strength (1.2–1.8 MPa), closely resembling cancellous bone and indicating suitability for bone regeneration. They were biocompatible, promoted osteoblast adhesion, proliferation, and differentiation, and supported apatite deposition on their surfaces, demonstrating strong bioactivity and potential for implant osseointegration. Importantly, the scaffolds did not trigger excessive production of reactive oxygen or nitro- gen species, suggesting a low risk of inflammatory responses. Additionally, CAPE-enriched scaffolds inhibited biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis, reducing the risk of implant-associated infections. In summary, these CAPE-modified scaf- folds integrate optimal microstructural and biological features, such as reducing oxidative stress and inhibiting biofilm formation, and thus offer a promising strategy for enhancing bone repair and regeneration in clinical applications. |
