AI-Based Image Time-Series Analysis of the Niacin Skin Flush Test in Schizophrenia and Bipolar Disorder
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
| Status: | |
| Autorzy: | Sitarz Ryszard, Syta Arkadiusz, Karpiński Robert, Machrowska Anna, Róg Joanna, Karakuła Kaja, Juchnowicz Dariusz, Karakuła-Juchnowicz Hanna |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 23 |
| Wolumen/Tom: | 15 |
| Numer artykułu: | 12368 |
| Strony: | 1 - 21 |
| Impact Factor: | 2,5 |
| Efekt badań statutowych | NIE |
| Finansowanie: | The study was financed from the grant registered under number GW/PB/6/2022, PBsd101 based on the provisions of Annex No. 2 to Order No. 12/2021 of the Rector of the Medical University of Lublin of 27 January 2021. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 21 listopada 2025 |
| Abstrakty: | angielski |
| Psychotic disorders such as schizophrenia (SCH) and bipolar affective disorder (BD) are associated with lipid metabolism abnormalities and inflammatory dysregulation. The niacin skin flush test (NSFT) has long been investigated as a non-invasive indicator of these disturbances. This study used deep learning models to assess the diagnostic utility of SKIN- REMS, a computerized system for automated temporal analysis of skin flush responses. The study included a total of 188 participants, comprising individuals with psychotic disorders and healthy controls. Sequential skin images were recorded after topical application of methyl nicotinate. Five convolutional neural network architectures—ResNet50, ResNet101, DenseNet121, InceptionV3, and EfficientNetB0—were evaluated for their performance in analyzing these time-dependent dermatological responses in a binary classification task. Accuracy, precision, recall, F1-score, and AUC were calculated at four time points ( frames 1, 10, 20, 30 ). The models demonstrated distinct temporal performance profiles. ResNet50 showed consistent high performance across all time points, making it suitable for clinical environments requiring stable predictions. DenseNet121 achieved the highest AUC (up to 0.99) after 15 min, indicating its potential in extended monitoring. EfficientNetB0 offered gradual performance improvement with lower computational demands, while InceptionV3 was most effective at intermediate time points. ResNet101 showed initial high performance but declined mid-phase. AUC remained stable across all models, sug- gesting robust discriminative capability over time. This study highlights the importance of selecting appropriate deep learning architectures based on the temporal dynamics of biological responses. The findings demonstrate potential for future clinical application of AI in non-invasive diagnostics of psychotic spectrum disorders. |
