Coupled Electromagnetic–Thermal Modeling of HTS Transformer Inrush Current: Experimental Validation and Thermal Analysis
Artykuł w czasopiśmie
MNiSW
140
Lista 2024
| Status: | |
| Autorzy: | Komarzyniec Grzegorz, Stępień Łukasz, Łagodowski Zbigniew |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 22 |
| Wolumen/Tom: | 18 |
| Numer artykułu: | 5993 |
| Strony: | 1 - 23 |
| Impact Factor: | 3,2 |
| Web of Science® Times Cited: | 0 |
| Bazy: | Web of Science |
| Efekt badań statutowych | NIE |
| Finansowanie: | The APC was funded by Lublin University of Technology, 38D Nadbystrzycka Street, 20-618 Lublin, Poland. |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 15 listopada 2025 |
| Abstrakty: | angielski |
| The article presents a numerical model of a high-temperature superconducting (HTS) transformer rated at 13.8 kVA, equipped with windings made of 2G ReBCO tapes. The model was developed to analyze the coupled electromagnetic and thermal phenomena occurring during the inrush current period of transformer energization. It describes the dynamic processes of critical current exceedance, resistive zone formation, and local temperature rise within the superconducting tape structure under realistic operating conditions. The geometry of the ReBCO tape is represented with its active superconducting layer and metallic stabilizer layers. Temperature-dependent material properties of each layer, such as electrical resistivity, thermal conductivity, and specific heat capacity, are incorporated into the model. This approach enables a detailed analysis of the temperature distribution across all layers of the superconducting tape. The results indicate that the highest thermal stress occurs during the first inrush current peak, whose amplitude exceeds the critical current of the winding. At this stage, a distinct temperature rise is observed in the stabilizer layers, followed by gradual cooling in subsequent cycles of operation. The simulated current and temperature waveforms show good agreement with experimental measurements performed on a liquid-nitrogen-cooled transformer prototype. The developed model enables quantitative evaluation of local overheating risks, analysis of Joule loss distribution, and assessment of the influence of supply parameters and circuit impedance on the thermal stability of the system. Its application supports the optimization of HTS transformer design and provides valuable insight into the reliability of superconducting windings under transient inrush current conditions. |
