Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
5
spoza listy
Status:
Autorzy: Malladi Ravi Chandra, Garbacz Tomasz, Borg Ruben Paul, Selvaraj Thirumalini, Vrabec Mirijam
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2026
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Wolumen/Tom: 117
Numer artykułu: 114753
Strony: 1 - 14
Scopus® Cytowania: 0
Bazy: Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: NIE
Abstrakty: angielski
The increasing atmospheric CO2 levels in urban environments significantly influence lime mortar carbonation kinetics and mechanical properties, presenting critical implications for heritage restoration applications. This study investigates the performance enhancement of organically modified lime mortars (OMLMs) under controlled CO2 conditions: ambient (400 ppm) and accelerated (1000 ppm). Four mortar formulations were synthesized using hydrated lime, siliceous aggregate, and two organic additives, kadukkai (Terminalia chebula) and jaggery, compared against an unmodified reference composition. Comprehensive characterization techniques were performed using uniaxial compressive strength, quantitative X-ray diffraction with Rietveld refinement, thermogravimetric analysis, and mercury intrusion porosimetry following 56-day controlled carbonation. Results demonstrated that OMLMs exhibited enhanced mechanical performance, with jaggery specimens showing optimal development. Under accelerated CO2 conditions, organic additives yielded 33 % compressive strength improvements relative to reference mortars, with improved pore structure refinement and crystallinity indices. Correlative multimodal characterization revealed that organics facilitate secondary hydration product nucleation and calcium oxalate formation concurrent with carbonate precipitation. Microstructural characterization demonstrated porosity reduction to 27.7 % in mixed mortar under accelerated conditions vs 36.8 % for natural reference. Mineralogical analysis confirmed the formation of stable weddellite phases contributed to enhanced durability through matrix densification. This research provides scientific validation for traditional methodologies while demonstrating the potential of OMLMs for enhanced performance in high CO2 urban environments, offering sustainable solutions for both heritage restoration and contemporary construction applications.