Life Cycle Assessment of Small Passenger Cars in the Context of Smart Grid Integration and Sustainable Power System Development
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
| Status: | |
| Autorzy: | Piotrowska Katarzyna, Piasecka Izabela, Opielak Marek |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2025 |
| Wersja dokumentu: | Drukowana | Elektroniczna |
| Język: | angielski |
| Numer czasopisma: | 23 |
| Wolumen/Tom: | 17 |
| Numer artykułu: | 10788 |
| Strony: | 1 - 27 |
| Impact Factor: | 3,3 |
| Scopus® Cytowania: | 0 |
| Bazy: | Scopus |
| Efekt badań statutowych | NIE |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 2 grudnia 2025 |
| Abstrakty: | angielski |
| The accelerating integration of electromobility into renewable-based power systems neces- sitates a comprehensive understanding of vehicle life cycles and their interactions with emerging smart grid infrastructures. This study employs a Life Cycle Assessment (LCA) approach to evaluate the environmental performance of materials and components used in A- and B-segment passenger vehicles, within the framework of sustainable energy system development. Four propulsion technologies—petrol, diesel, compressed natural gas (CNG), and battery electric vehicles (BEVs)—were analyzed across two technological horizons (2020 and 2050), considering both landfilling and recycling end-of-life scenarios. The results demonstrate that while BEVs offer the lowest operational emissions and the greatest poten- tial for supporting grid flexibility and renewable energy integration, they also exhibit the highest environmental burdens during production, primarily due to battery manufacturing. Nevertheless, the adoption of advanced recycling technologies significantly mitigates these impacts by reducing resource depletion, global warming potential, and cumulative energy demand. The findings highlight that circular material management and high-efficiency recycling are critical enablers of sustainable electromobility. By linking vehicle charging, energy storage, and recycling strategies, the integration of transport and energy systems can enhance grid stability, improve resource efficiency, and accelerate progress toward a decarbonized, resilient, and smart energy future. |
