Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Mika Dariusz, Józwik Jerzy, Ruggiero Alessandro
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 23
Wolumen/Tom: 25
Numer artykułu: 7371
Strony: 1 - 23
Impact Factor: 3,5
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Finansowanie: This work was prepared within the project PM-II/SP/0093/2024/02 titled “Building the algorithms of blind signal processing based on geometrical structure of information”, financed by the Ministry of Education and Science (Poland) as a part of the Polish Metrology II Programme.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 4 grudnia 2025
Abstrakty: angielski
This manuscript presents a study on the application of blind source separation (BSS) techniques, specifically the Independent Component Analysis (ICA) method, for the detection and identification of localized faults in rolling element bearings. Bearing defects typically manifest as distinct harmonics of characteristic fault frequencies, accompanied by modulation sidebands in the vibration signal spectrum. The accurate extraction and isolation of these components are crucial for reliable fault diagnosis, particularly in systems where multiple vibration sources overlap. In this work, a linear ICA algorithm was applied to vibration signals acquired from a simplified rotating machinery setup designed to emulate common bearing fault conditions. The study investigates the effect of ICA-based signal decomposition on the statistical distribution of selected diagnostic indicators and evaluates its ability to enhance the detectability of fault-related components. The experimental results demonstrate that the application of ICA significantly improves the separation of vibration sources, leading to a more distinct representation of fault signatures. The findings confirm the effectiveness of blind source separation methods in vibration-based diagnostics and highlight the potential of ICA as a complementary tool for improving the accuracy and robustness of bearing fault detection systems in rotating machinery.