Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
20
Poziom I
Status:
Autorzy: Rangani Mehul, Joshi Sanjay, Vaghela Ajaysinh, Barnat-Hunek Danuta
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Strony: 1 - 5
Efekt badań statutowych NIE
Materiał konferencyjny: TAK
Nazwa konferencji: International Conference on Computational Intelligence, Emerging Technologies, and Smart Systems 2025
Skrócona nazwa konferencji: ICCIETSS 2025
URL serii konferencji: LINK
Termin konferencji: 28 marca 2025 do 29 marca 2025
Miasto konferencji: Rajkot
Państwo konferencji: INDIE
Publikacja OA: NIE
Abstrakty: angielski
Over the last decade, fly ash has been used more and more in concrete as a supplementary cementitious material, which has helped improve durability, sustainability, and costeffectiveness in construction. Fly ash is a by-product of coal burning in thermal power plants and consists of fine particles mainly made up of silica, alumina, and iron oxide. Although it has its benefits, its performance in actual applications is usually constrained by particle size, morphology, and fineness that influence its pozzolanic reactivity. The existence of coarser and irregular particles limits the effectiveness of fly ash as an SCM, requiring additional processing to maximize its performance. The work examines the performance of the Los Angeles (LA) machine as a grinding device for grinding fly ash particles finer and more uniformly distributed, thus enhancing their surface area and reactivity. The Los Angeles machine, normally employed for testing aggregate abrasion, was modified in this work to determine if it can be used to grind fly ash to a finer particle size for incorporation into concrete. The grinding operation serves to reduce coarser fly ash particles into finer ones, so they can effectively engage in pozzolanic reactions when combined with cementitious materials. Experimental runs were carried out with different parameters, such as grinding time, speed of rotation, and the amount of grinding media employed in the Los Angeles machine. Fly ash samples were ground under varying grinding conditions and their resulting particle size distribution, specific surface area, and morphology were studied. The ground fly ash was subsequently compared with unground fly ash to assess the enhancement in its fineness and reactivity. Some advanced characterization methods like laser diffraction particle size analysis and X-ray diffraction (XRD) were used to investigate the impact of grinding on the physical and chemical characteristics of fly ash. The findings of the research show that the Los Angeles machine can efficiently grind fly ash into smaller particles, greatly expanding its surface area and its pozzolanic reactivity. The ground fly ash exhibited enhanced performance as a supplementary cementitious material by encouraging improved particle packing, minimizing voids in the concrete matrix, and increasing the overall strength and durability of concrete. The enhancement of fineness was responsible for a greater proportion of hydration reactions upon mixing with cement, which resulted in better early-age and long-term mechanical characteristics.