Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Głogowska Karolina, Sikora Janusz
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2026
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 2
Wolumen/Tom: 19
Numer artykułu: 253
Strony: 1 - 18
Efekt badań statutowych NIE
Finansowanie: This work was supported by the Lublin University of Technology pro-quality subsidy for the development of the research potential under individual grants No FD-20/IM-5/036 in 2025.
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 8 stycznia 2026
Abstrakty: angielski
This study evaluates the effect of mould material and mould wall thickness on the thermal behaviour and cycle time of the LLDPE rotational moulding process by using RotoSim- based numerical simulation. This study was performed using three different metallic materials (low-carbon steel, brass, and aluminium), mould wall thicknesses of 3, 5, and 8 mm, and oven temperatures of 230, 250, and 270 ◦C. The simulations demonstrate that both mould material and wall thickness significantly influence the temperature evolution in the mould cavity and the overall cycle duration. Aluminium moulds provided the mould-cavity temperature closest to the oven conditions, the longest time with the polymer in the plastic/molten state, and the shortest total cycle time compared with steel and brass moulds. Increasing the mould wall thickness prolonged the cycle time for all materials, with the extension occurring primarily during the cooling stage. For a 3 mm wall thickness at 230 ◦C, the shortest cycle time was 2900 s (Al/3/230) and the longest was 3300 s (S/3/230). For an 8 mm wall thickness at 270 ◦C, the shortest cycle time was 4400 s (Al/8/270) and the longest was 4900 s (S/8/270). These results indicate that selecting an appropriate mould material and wall thickness can be an effective approach to shortening the cycle time and improving the efficiency of LLDPE rotational moulding.