Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
140
Lista 2024
Status:
Autorzy: Janowski Grzegorz, Frącz Wiesław, Bąk Łukasz, Sikora Janusz, Tomczyk Adam, Mrówka-Nowotnik Grażyna, Mossety-Leszczak Beata, Pawłowska Beata
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2025
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 23
Wolumen/Tom: 18
Numer artykułu: 5368
Strony: 1 - 25
Impact Factor: 3,2
Web of Science® Times Cited: 0
Scopus® Cytowania: 0
Bazy: Web of Science | Scopus
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 28 listopada 2025
Abstrakty: angielski
The growing demand for sustainable materials in a circular economy necessitates the evaluation of the recyclability of biodegradable composites. This study aims to investigate the effect of multiple mechanical recycling cycles on the properties of a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposite containing 45 wt% spent coffee grounds (SCG). The material was produced via extrusion and injection molding, followed by five consecutive recycling cycles under controlled processing parameters. Changes in mechanical properties (tensile strength, elastic modulus, elongation at break, hardness, and impact tensile strength), processing shrinkage, thermal structure (DSC), and microstructure (SEM) were evaluated. The results revealed a gradual increase in PHBV crystallinity, confirmed by DSC analysis. Consequently, the changes in mechanical properties were significant; specifically, the elastic modulus increased by approximately 9.6% and hardness improved, whereas elongation at break decreased by approx. 18% and impact strength declined, indicating a transition towards a stiffer but more brittle material. SEM observations suggested microstructural evolution with reduced agglomerates after subsequent cycles and the predominance of a brittle fracture mechanism. Linear shrinkage in the flow direction remained stable, whereas changes in thickness shrinkage correlated with the formation of micropores. The findings demonstrate that PHBV-SCG biocomposites maintain adequate mechanical and processing performance even after five recycling cycles, highlighting their potential for applications within a circular economy framework.