Informacja o cookies

Zgadzam się Nasza strona zapisuje niewielkie pliki tekstowe, nazywane ciasteczkami (ang. cookies) na Twoim urządzeniu w celu lepszego dostosowania treści oraz dla celów statystycznych. Możesz wyłączyć możliwość ich zapisu, zmieniając ustawienia Twojej przeglądarki. Korzystanie z naszej strony bez zmiany ustawień oznacza zgodę na przechowywanie cookies w Twoim urządzeniu.

Publikacje Pracowników Politechniki Lubelskiej

MNiSW
100
Lista 2024
Status:
Autorzy: Liashenko Oksana, Pavlov Kostiantyn, Pavlova Olena, Chmura Robert, Czechowska-Kosacka Aneta, Vlasenko Tetiana, Sabat Anna
Dyscypliny:
Aby zobaczyć szczegóły należy się zalogować.
Rok wydania: 2026
Wersja dokumentu: Drukowana | Elektroniczna
Język: angielski
Numer czasopisma: 2
Wolumen/Tom: 18
Numer artykułu: 601
Strony: 1 - 22
Impact Factor: 3,3
Efekt badań statutowych NIE
Materiał konferencyjny: NIE
Publikacja OA: TAK
Licencja:
Sposób udostępnienia: Witryna wydawcy
Wersja tekstu: Ostateczna wersja opublikowana
Czas opublikowania: W momencie opublikowania
Data opublikowania w OA: 7 stycznia 2026
Abstrakty: angielski
As global efforts to achieve the Sustainable Development Goals (SDGs) enter a critical phase, there is a growing need for analytical tools that reflect the complexity and heterogeneity of development pathways. This study introduces a probabilistic classification framework designed to uncover latent typologies of national performance across the seventeen Sustainable Development Goals. Unlike traditional ranking systems or composite indices, the proposed method uses raw, standardised goal-level indicators and accounts for both structural variation and classification uncertainty. The model integrates a Bayesian decision tree with penalised spline regressions and includes regional covariates to capture context-sensitive dynamics. Based on publicly available global datasets covering more than 150 countries, the analysis identifies three distinct development profiles: structurally vulnerable systems, transitional configurations, and consolidated performers. Posterior probabilities enable soft classification, highlighting ambiguous or hybrid country profiles that do not fit neatly into a single category. Results reveal both monotonic and nonmonotonic indicator behaviours, including saturation effects in infrastructure-related goals and paradoxical patterns in climate performance. This typology-sensitive approach provides a transparent and interpretable alternative to aggregated indices, supporting more differentiated and evidence-based sustainability assessments. The findings provide a practical basis for tailoring national strategies to structural conditions and the multidimensional nature of sustainable development.