Deformation mechanisms and microstructure evolution in multi-pass hot spinning of Inconel825/Q345 explosive clad composite cylinders
Artykuł w czasopiśmie
MNiSW
100
Lista 2024
| Status: | |
| Autorzy: | Shan Yuanyuan, Li Zixuan, Pater Zbigniew, Shu Xuedao |
| Dyscypliny: | |
| Aby zobaczyć szczegóły należy się zalogować. | |
| Rok wydania: | 2026 |
| Wersja dokumentu: | Elektroniczna |
| Język: | angielski |
| Wolumen/Tom: | 41 |
| Strony: | 2937 - 2965 |
| Impact Factor: | 6,6 |
| Scopus® Cytowania: | 0 |
| Bazy: | Scopus |
| Efekt badań statutowych | NIE |
| Finansowanie: | This work was supported by the National Natural Science Foundation of China (No. 52205403, No. 52105391), the Zhejiang Provincial Natural Science Foundation (LY24E050002), the Ningbo Yongjiang Talent Program (2023A-157-G), the Ningbo Science and Technology Major Special Project (2023Z011), and the China-Central and Eastern Euro pean Countries Joint Education Program (2023320), Mechanics Interdisciplinary Fund for Outstanding Young Sholars of Ningbo University (ZX2025000396). |
| Materiał konferencyjny: | NIE |
| Publikacja OA: | TAK |
| Licencja: | |
| Sposób udostępnienia: | Witryna wydawcy |
| Wersja tekstu: | Ostateczna wersja opublikowana |
| Czas opublikowania: | W momencie opublikowania |
| Data opublikowania w OA: | 31 stycznia 2026 |
| Abstrakty: | angielski |
| Explosive clad plates combining dissimilar metals are promising for aerospace components, yet their forming behavior remains challenging due to property mismatches between constituent layers. This study investigates the multi-pass hot spinning of Inconel825/Q345 explosive clad composite cylinders through integrated finite element simulation and experimental characterization. A thermo-mechanical model is established to simulate the 7-pass process, and the deformation mechanisms are analyzed based on stress triaxiality and microstructural evolution. Results show that the outer Inconel825 layer undergoes coupled axial-circumferential deformation while the inner Q345 layer exhibits constrained passive deformation with enhanced radial compression. The stress state transitions axially from tensile-dominated near the tailstock to compressive-dominated toward the flange. Microstructurally, the recrystallized fraction in Inconel825 decreases sharply from 99.8 % in the raw material, the interface becomes subgrain-dominated with a peak subgrain fraction of 70.7 %, and the Q345 layer shows stress-state-dependent evolution with recrystallization of 96.8 % and grain coarsening to 26.7 μm in high-triaxiality regions but fine equiaxed grains in low-triaxiality regions. Compared with the 7-pass path, the 16-pass path produces a more diversified texture distribution and achieves improved mechanical performance, including an ultimate tensile strength of 714.75 MPa, a yield strength of 463.77 MPa, as well as 23.9 % higher reverse bending strength, 10.0 % higher lateral bending strength, and a peak tensile-shear strength of 168.40 MPa. Residual-stress tests further show that the tensile residual stress at point Z in the Inconel825 layer increases by 50.0 % and that in the Q345 layer increases by 37.9 %. |
